\(\int \frac {(a+b x)^2}{x^{5/3}} \, dx\) [665]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 34 \[ \int \frac {(a+b x)^2}{x^{5/3}} \, dx=-\frac {3 a^2}{2 x^{2/3}}+6 a b \sqrt [3]{x}+\frac {3}{4} b^2 x^{4/3} \]

[Out]

-3/2*a^2/x^(2/3)+6*a*b*x^(1/3)+3/4*b^2*x^(4/3)

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 34, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {45} \[ \int \frac {(a+b x)^2}{x^{5/3}} \, dx=-\frac {3 a^2}{2 x^{2/3}}+6 a b \sqrt [3]{x}+\frac {3}{4} b^2 x^{4/3} \]

[In]

Int[(a + b*x)^2/x^(5/3),x]

[Out]

(-3*a^2)/(2*x^(2/3)) + 6*a*b*x^(1/3) + (3*b^2*x^(4/3))/4

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {a^2}{x^{5/3}}+\frac {2 a b}{x^{2/3}}+b^2 \sqrt [3]{x}\right ) \, dx \\ & = -\frac {3 a^2}{2 x^{2/3}}+6 a b \sqrt [3]{x}+\frac {3}{4} b^2 x^{4/3} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.82 \[ \int \frac {(a+b x)^2}{x^{5/3}} \, dx=-\frac {3 \left (2 a^2-8 a b x-b^2 x^2\right )}{4 x^{2/3}} \]

[In]

Integrate[(a + b*x)^2/x^(5/3),x]

[Out]

(-3*(2*a^2 - 8*a*b*x - b^2*x^2))/(4*x^(2/3))

Maple [A] (verified)

Time = 0.08 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.74

method result size
gosper \(-\frac {3 \left (-b^{2} x^{2}-8 a b x +2 a^{2}\right )}{4 x^{\frac {2}{3}}}\) \(25\)
derivativedivides \(-\frac {3 a^{2}}{2 x^{\frac {2}{3}}}+6 a b \,x^{\frac {1}{3}}+\frac {3 b^{2} x^{\frac {4}{3}}}{4}\) \(25\)
default \(-\frac {3 a^{2}}{2 x^{\frac {2}{3}}}+6 a b \,x^{\frac {1}{3}}+\frac {3 b^{2} x^{\frac {4}{3}}}{4}\) \(25\)
trager \(-\frac {3 \left (-b^{2} x^{2}-8 a b x +2 a^{2}\right )}{4 x^{\frac {2}{3}}}\) \(25\)
risch \(-\frac {3 \left (-b^{2} x^{2}-8 a b x +2 a^{2}\right )}{4 x^{\frac {2}{3}}}\) \(25\)

[In]

int((b*x+a)^2/x^(5/3),x,method=_RETURNVERBOSE)

[Out]

-3/4*(-b^2*x^2-8*a*b*x+2*a^2)/x^(2/3)

Fricas [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.68 \[ \int \frac {(a+b x)^2}{x^{5/3}} \, dx=\frac {3 \, {\left (b^{2} x^{2} + 8 \, a b x - 2 \, a^{2}\right )}}{4 \, x^{\frac {2}{3}}} \]

[In]

integrate((b*x+a)^2/x^(5/3),x, algorithm="fricas")

[Out]

3/4*(b^2*x^2 + 8*a*b*x - 2*a^2)/x^(2/3)

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.39 (sec) , antiderivative size = 1957, normalized size of antiderivative = 57.56 \[ \int \frac {(a+b x)^2}{x^{5/3}} \, dx=\text {Too large to display} \]

[In]

integrate((b*x+a)**2/x**(5/3),x)

[Out]

Piecewise((-27*a**(28/3)*b**(2/3)*(-1 + b*(a/b + x)/a)**(1/3)*exp(2*I*pi/3)/(-4*a**8*exp(2*I*pi/3) + 12*a**7*b
*(a/b + x)*exp(2*I*pi/3) - 12*a**6*b**2*(a/b + x)**2*exp(2*I*pi/3) + 4*a**5*b**3*(a/b + x)**3*exp(2*I*pi/3)) -
 27*a**(28/3)*b**(2/3)/(-4*a**8*exp(2*I*pi/3) + 12*a**7*b*(a/b + x)*exp(2*I*pi/3) - 12*a**6*b**2*(a/b + x)**2*
exp(2*I*pi/3) + 4*a**5*b**3*(a/b + x)**3*exp(2*I*pi/3)) + 72*a**(25/3)*b**(5/3)*(-1 + b*(a/b + x)/a)**(1/3)*(a
/b + x)*exp(2*I*pi/3)/(-4*a**8*exp(2*I*pi/3) + 12*a**7*b*(a/b + x)*exp(2*I*pi/3) - 12*a**6*b**2*(a/b + x)**2*e
xp(2*I*pi/3) + 4*a**5*b**3*(a/b + x)**3*exp(2*I*pi/3)) + 81*a**(25/3)*b**(5/3)*(a/b + x)/(-4*a**8*exp(2*I*pi/3
) + 12*a**7*b*(a/b + x)*exp(2*I*pi/3) - 12*a**6*b**2*(a/b + x)**2*exp(2*I*pi/3) + 4*a**5*b**3*(a/b + x)**3*exp
(2*I*pi/3)) - 60*a**(22/3)*b**(8/3)*(-1 + b*(a/b + x)/a)**(1/3)*(a/b + x)**2*exp(2*I*pi/3)/(-4*a**8*exp(2*I*pi
/3) + 12*a**7*b*(a/b + x)*exp(2*I*pi/3) - 12*a**6*b**2*(a/b + x)**2*exp(2*I*pi/3) + 4*a**5*b**3*(a/b + x)**3*e
xp(2*I*pi/3)) - 81*a**(22/3)*b**(8/3)*(a/b + x)**2/(-4*a**8*exp(2*I*pi/3) + 12*a**7*b*(a/b + x)*exp(2*I*pi/3)
- 12*a**6*b**2*(a/b + x)**2*exp(2*I*pi/3) + 4*a**5*b**3*(a/b + x)**3*exp(2*I*pi/3)) + 12*a**(19/3)*b**(11/3)*(
-1 + b*(a/b + x)/a)**(1/3)*(a/b + x)**3*exp(2*I*pi/3)/(-4*a**8*exp(2*I*pi/3) + 12*a**7*b*(a/b + x)*exp(2*I*pi/
3) - 12*a**6*b**2*(a/b + x)**2*exp(2*I*pi/3) + 4*a**5*b**3*(a/b + x)**3*exp(2*I*pi/3)) + 27*a**(19/3)*b**(11/3
)*(a/b + x)**3/(-4*a**8*exp(2*I*pi/3) + 12*a**7*b*(a/b + x)*exp(2*I*pi/3) - 12*a**6*b**2*(a/b + x)**2*exp(2*I*
pi/3) + 4*a**5*b**3*(a/b + x)**3*exp(2*I*pi/3)) + 3*a**(16/3)*b**(14/3)*(-1 + b*(a/b + x)/a)**(1/3)*(a/b + x)*
*4*exp(2*I*pi/3)/(-4*a**8*exp(2*I*pi/3) + 12*a**7*b*(a/b + x)*exp(2*I*pi/3) - 12*a**6*b**2*(a/b + x)**2*exp(2*
I*pi/3) + 4*a**5*b**3*(a/b + x)**3*exp(2*I*pi/3)), Abs(b*(a/b + x)/a) > 1), (27*a**(28/3)*b**(2/3)*(1 - b*(a/b
 + x)/a)**(1/3)/(-4*a**8*exp(2*I*pi/3) + 12*a**7*b*(a/b + x)*exp(2*I*pi/3) - 12*a**6*b**2*(a/b + x)**2*exp(2*I
*pi/3) + 4*a**5*b**3*(a/b + x)**3*exp(2*I*pi/3)) - 27*a**(28/3)*b**(2/3)/(-4*a**8*exp(2*I*pi/3) + 12*a**7*b*(a
/b + x)*exp(2*I*pi/3) - 12*a**6*b**2*(a/b + x)**2*exp(2*I*pi/3) + 4*a**5*b**3*(a/b + x)**3*exp(2*I*pi/3)) - 72
*a**(25/3)*b**(5/3)*(1 - b*(a/b + x)/a)**(1/3)*(a/b + x)/(-4*a**8*exp(2*I*pi/3) + 12*a**7*b*(a/b + x)*exp(2*I*
pi/3) - 12*a**6*b**2*(a/b + x)**2*exp(2*I*pi/3) + 4*a**5*b**3*(a/b + x)**3*exp(2*I*pi/3)) + 81*a**(25/3)*b**(5
/3)*(a/b + x)/(-4*a**8*exp(2*I*pi/3) + 12*a**7*b*(a/b + x)*exp(2*I*pi/3) - 12*a**6*b**2*(a/b + x)**2*exp(2*I*p
i/3) + 4*a**5*b**3*(a/b + x)**3*exp(2*I*pi/3)) + 60*a**(22/3)*b**(8/3)*(1 - b*(a/b + x)/a)**(1/3)*(a/b + x)**2
/(-4*a**8*exp(2*I*pi/3) + 12*a**7*b*(a/b + x)*exp(2*I*pi/3) - 12*a**6*b**2*(a/b + x)**2*exp(2*I*pi/3) + 4*a**5
*b**3*(a/b + x)**3*exp(2*I*pi/3)) - 81*a**(22/3)*b**(8/3)*(a/b + x)**2/(-4*a**8*exp(2*I*pi/3) + 12*a**7*b*(a/b
 + x)*exp(2*I*pi/3) - 12*a**6*b**2*(a/b + x)**2*exp(2*I*pi/3) + 4*a**5*b**3*(a/b + x)**3*exp(2*I*pi/3)) - 12*a
**(19/3)*b**(11/3)*(1 - b*(a/b + x)/a)**(1/3)*(a/b + x)**3/(-4*a**8*exp(2*I*pi/3) + 12*a**7*b*(a/b + x)*exp(2*
I*pi/3) - 12*a**6*b**2*(a/b + x)**2*exp(2*I*pi/3) + 4*a**5*b**3*(a/b + x)**3*exp(2*I*pi/3)) + 27*a**(19/3)*b**
(11/3)*(a/b + x)**3/(-4*a**8*exp(2*I*pi/3) + 12*a**7*b*(a/b + x)*exp(2*I*pi/3) - 12*a**6*b**2*(a/b + x)**2*exp
(2*I*pi/3) + 4*a**5*b**3*(a/b + x)**3*exp(2*I*pi/3)) - 3*a**(16/3)*b**(14/3)*(1 - b*(a/b + x)/a)**(1/3)*(a/b +
 x)**4/(-4*a**8*exp(2*I*pi/3) + 12*a**7*b*(a/b + x)*exp(2*I*pi/3) - 12*a**6*b**2*(a/b + x)**2*exp(2*I*pi/3) +
4*a**5*b**3*(a/b + x)**3*exp(2*I*pi/3)), True))

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.71 \[ \int \frac {(a+b x)^2}{x^{5/3}} \, dx=\frac {3}{4} \, b^{2} x^{\frac {4}{3}} + 6 \, a b x^{\frac {1}{3}} - \frac {3 \, a^{2}}{2 \, x^{\frac {2}{3}}} \]

[In]

integrate((b*x+a)^2/x^(5/3),x, algorithm="maxima")

[Out]

3/4*b^2*x^(4/3) + 6*a*b*x^(1/3) - 3/2*a^2/x^(2/3)

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.71 \[ \int \frac {(a+b x)^2}{x^{5/3}} \, dx=\frac {3}{4} \, b^{2} x^{\frac {4}{3}} + 6 \, a b x^{\frac {1}{3}} - \frac {3 \, a^{2}}{2 \, x^{\frac {2}{3}}} \]

[In]

integrate((b*x+a)^2/x^(5/3),x, algorithm="giac")

[Out]

3/4*b^2*x^(4/3) + 6*a*b*x^(1/3) - 3/2*a^2/x^(2/3)

Mupad [B] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.71 \[ \int \frac {(a+b x)^2}{x^{5/3}} \, dx=\frac {-6\,a^2+24\,a\,b\,x+3\,b^2\,x^2}{4\,x^{2/3}} \]

[In]

int((a + b*x)^2/x^(5/3),x)

[Out]

(3*b^2*x^2 - 6*a^2 + 24*a*b*x)/(4*x^(2/3))